Bayesian Statistics

 VALENCIA 8

- Background and history of Bayes' theorem and Bayesian statistical inference
- Definition and explanation of Bayes' theorem
- Conflict between Bayesians and Frequentists
- Derivation from conditional probabilities
- Alternative forms of Bayes' theorem:
~ odds and liklihood ratio
\sim probability densities
~ extension: more than two variables
- Examples
\sim conditional probabilities
\sim the Monty Hall problem

Backgoand and Histosy

- Bayes' theorem was devised by Reverend Thomas Bayes (1702-1761)
- He studied how to compute a distribution for the parameter of a binomial distribution
- His work was published in An Essay towards solving a Problem in the Doctrine of Chances, made public by his friend Richard Price after his death
- These results were replicated by Pierre Simon Laplace in an essay in 1774, though he was unaware of Bayes' work
- Bayes' theorem does not mention the order in which the events occur, it measures their correlation rather than cause and effect
- The preliminary results of Bayes' essay imply the theorem, but Bayes did not actually focus on that result

* Frequentists and Bayesians disagree about the types of quantities to which probabilities should be assigned in applications
* Frequentists assign probabilities to random events according to their frequencies of occurrence or to subsets of populations as proportions of the whole
* Bayesians assign probabilities to propositions that are uncertain
* Research has been done in which to develop new procedures to allow an agreement between the Bayesians' and Frequentists' approaches to testing hypotheses

- Bayes' theorem is a result of probability theory which relates conditional probabilities
- If A and B denote two events, $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ denotes the conditional probability of A occuring, given that B occurs
- The two conditional probabilities $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ and $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$ are related with Bayes' theorem
- An application of Bayes' theorem is statistical inference, in which evidence or observations are used to update or to newly infer the probability that a hypothesis may be true. Bayes' theorem provides a rule for strengthening the evidence-based beliefs
- The theorem relates the conditional and marginal probabilities of events A and B :

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

$\sim \mathrm{P}(\mathrm{A})$ is the prior (marginal) probability of A
$\sim P(A \mid B)$ is the conditional probability of A, given B (posterior probability)
$\sim P(B \mid A)$ is the conditional probability of B, given A
$\sim \mathrm{P}(\mathrm{B})$ is the prior (marginal) probability of B (normalizing constant)

Desivation prom Conditional Probatilitier

To derive Bayes' theorem, start with the definition of conditional probability:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \quad \text { or } \quad P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

Rearranging, we are given:

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \mathrm{P}(\mathrm{~B})=\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \mathrm{P}(\mathrm{~A})
$$

\sim this is called the product rule for probabilities
Divide both sides of the equation by $\mathrm{P}(\mathrm{B})$:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

And we have Bayes' theorem!

* Bayes' law in terms of an odds and liklihood ratio: Odds: $\quad \mathrm{O}(\mathrm{A} \mid \mathrm{B})=\mathrm{O}(\mathrm{A}) \bullet \wedge(\mathrm{A} \mid \mathrm{B})$

Liklihood: $\quad \Lambda(A \mid B)=\frac{L(A \mid B)}{L\left(A^{c} \mid B\right)}=\frac{P(B \mid A)}{P\left(B \mid A^{c}\right)}$

* In terms of probability densities:

$$
f(x \mid y)=\frac{f(y, x)}{f(y)}=\frac{f(y \mid x) f(x)}{f(y)}
$$

* Extension to problems with more than 2 variables:

$$
P(A \mid B \cap C)=\frac{P(A) P(B \mid A) P(C \mid A \cap B)}{P(B) P(C \mid B)}
$$

Conditional Probabilities:
\sim We have two bowls of m\&m's - \#1 has 10 purple and 30 green and \#2 has 20 of each color
\sim Russ picks a bowl randomly, and then picks an m\&m randomly. The color turns out to be green. How probable is it that Russ picked out of bowl \#1? (the probability Russ picked bowl \#1 given he has a green m\&m?)
\sim Event A is that Russ picked out of \#1, and event B is that he picked a green m\&m

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A})=0.5 \\
& \mathrm{P}(\mathrm{~B})=50 / 80=0.625 \\
& \mathrm{P}(\mathrm{~B} \mid \mathrm{A})=30 / 40=0.75
\end{aligned}
$$

\sim We can compute the probability of Russ selecting bowl \#1, given he got a green $m \& m$ by substituting in the values:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}=\frac{0.75 \times 0.5}{0.625}=0.6
$$

\sim As we would intuitively expect, the probability is more than $1 / 2 \odot$

Examples

The Monty Hall Problem:

\sim We have 3 doors (red, green, blue) behind one of which is a prize
\sim We pick the red door, which is not opened until later
\sim The presenter opens the green door (who is not permitted to open the door with the prize behind it or the door we have picked) to reveal no prize
~ Should we change our mind about our initial choice of red to blue?
\sim We need to find the probabilities of the prize being behind the red, green, and blue doors $\left(A_{r}, A_{g}\right.$, and $\left.A_{b}\right)$:

The correct choice based on probability is to switch to the blue door \odot

$$
* \mathrm{P}\left(\mathrm{~A}_{\mathrm{r}}\right)=\stackrel{\circ}{\mathrm{P}}\left(\mathrm{~A}_{\mathrm{g}}\right)=\mathrm{P}\left(\mathrm{~A}_{\mathrm{b}}\right)=1 / 3
$$

noontinued

Abstract

We learned about:

- The background and history of Bayes' theorem and Bayesian statistical inference
- The definition and explanation of Bayes' theorem
-The conflict between Bayesians and Frequentists
- The derivation from conditional probabilities
- 3 Alternative forms of Bayes' theorem
- 2 Examples

